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This article presents an algorithm for estimating the signal-to-noise ratio (SNR)

of signals that contain data on a downconverted suppressed carrier or the first
harmonic of a square-wave subcarrier. This algorithm can be used to determine the

performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-Gttz)

mission by measuring the input and output symbol SNR. A performance analysis

of the algorithm shows that the estimator can estimate the complex symbol SNR

using 10,000 symbols at a true symbol SNR of-5 dB with a mean of-4.9985 dB
and a standard deviation of 0.2454 dB, and these analytical results are checked

by simulations of 100 runs with a mean of -5.06 dB and a standard deviation of
0.2506 dB.

I. Introduction

Current plans are for the performance of the full-

spectrum recorder (FSR) and full-spectrum combiner

(FSC) for the Galileo S-band (2.2- to 2.3-Gttz) mission to
be measured by running symbol-error-rate (SER) curves

on the demodulated data. To do so, one needs to generate

test signals at various points of the system, and the test

signals must be consistent from one point to the other,

which may be difficult. The measurement can only be
done at the output of the demodulator, which means that

if the demodulator is malfunctioning, other modules (e.g.,

the FSR or FSC) cannot be tested. Also, since test signals
are needed, online testing is impossible.

To overcome the disadvantages of measuring the per-

formance from the SER curves, one would like to directly

measure the symbol signal-to-noise ratio (SNR) at various

points of the system. This means that the symbol SNR has
to be estimated through complex symbols. By complex

symbols, we mean the real symbols at an offset frequency

with in-phase (I) and quadrature (Q) components. This

article presents a complex symbol SNR estimator that es-

timates the symbol SNR of data with I and Q components

of a carrier and/or the first harmonic of a square-wave
subcarrier. This SNR estimator can be used to measure

the performance of the FSC as well as that of the complex

symbol combiner for the Galileo S-band mission.

The technique of the complex symbol SNR estimator is

similar to that of the split-symbol moments estimator [1,2],

except with complex symbols rather than real ones. The
idea behind splitting a real symbol into two halves and

correlating them (originally suggested by Larry Howard

[2]), is to get the signal power by correlating two halves
of a symbol, where the signal parts of the two halves of
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the same symbol are correlated but the noises on the two
halves of the symbol are uncorrelated.

The same idea is applied here to the complex symbols,

with the assumption that the offset frequency is known.

The idea is to correlate the first half of a symbol with the

complex conjugate of the second half of the same symbol,

and then to take the real part to get the signal power multi-

plied by a factor that is a function of the offset frequency.

This factor can be divided out if the offset frequency is

known. The same step is repeated for N symbols, and the

results are averaged to get a better estimate of the signal

power.

The signal power plus the noise power can be obtained

by averaging the magnitudes squared of the sums of the

samples in a complex symbol over N symbols. The esti-

mate of the SNR ratio is then readily obtained. In the

next section, a brief description of the complex symbol

SNR estimator is given.

Some practical problems are not considered here. For

instance, the frequency offset may not be known and may

not be a constant. Also, if the symbol synchronization

is off, say by a sample, the performance of the estimator

will be affected, and in the future, the effect needs to be

quantified.

m 2

SNR = 2cr---_ (3)

Presented here is an algorithm to estimate this symbol

SNR. First, add all samples in the first half of a symbol

for I and Q separately,

N, 12-1

Y_dk = E Yl, k (4)
I=0

Ns/2-1

/=0

Repeat the first step for the second half of the symbol

Ns - 1

= (61
l=Ns]2

N8 - 1

= yq, (7)
I=N$/2

II. Brief Description of the Estimator

For given samples of I and Q components of baseband

data with an offset frequency Wo, we wish to estimate the

symbol SNR. The I and Q components of the/th sample

in the kth symbol are expressed as follows:

m d
YJ,k = _ k cos (CooIr_ + ¢o) + nz,_ (1)

m d
YQ,k = -_ k sin (woIT, + ¢o) + nQ,_ (2)

where

I = O,...,N,-1
k = 1,...,N

Here N, is the number of samples per symbol and is as-

sumed to be an even integer, T_ is the sample period, and

dk = +1 is the kth symbol. The noise samples in the I
and Q channels are assumed to be independent with zero

mean and equal variance _r_/N_. The true symbol SNR is

Multiply the I component of the first half of a symbol by

that of the second half; do the same for the Q components;

and add the results. This is.equivalent to taking the real

part of the product of the first half and the complex con-

jugate of the second half of a symbol. Repeat the same

procedure for N symbols, and average the results to obtain

the parameter rnp

N
1

k----1

N

N
it----1

where

Y_k = Y_,rk + JY,_Q_ (9)

YPk = YZxk + JY_Q, (10)
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Take the magnitude squared of the complex sum of the

two symbol halves, repeat for N symbols, and average the
results to obtain rnss

i N

rrt,_ : _ _ IY_k -4-Y_k 12 (11)
k=l

Mathematical expressions for the complex symbol halves

Y_ and Yp_ and the parameters mp and m_ are given in
Appendix A in terms of the underlying model parameters

of Eqs. (1) and (2). Finally, use mp and rn_ to obtain the
estimated symbol SNR

1

E {SNR*} -_ g (_p,_,,) +

[" 2 82g X

OmpOm_s + m, Om_, )

(14)

where cr_ and cr2 are the variances of mp and m,s
mp ross

respectively, and coy (mv,m,,) is their covariance. The

variance of the estimate, SNR*, can be approximated by

[3, p. 212]

SNR* =

4rnp sinJ (woT,/2) /[sinc 2 (woT, u/4) cos (woT, u/2)]

rnss - mp (2 + 2/cos (woT_y/2))

(12)

where wo is the offset angular frequency, and T_y is the
symbol duration,

T,_ = N.Ts

The estimate, SNR*, defined in Eq. (12) is shown in

the next section to have an expected value equal to the

true symbol SNR defined in Eq. (3), plus some bias that

decreases with the number of symbols averaged. The vari-
ance of SNR* is also derived in the next section as a func-

tion of the number of symbols averaged and the true sym-
bol SNR.

III. Mean and Variance of Symbol SNR
Estimates

In Eq. (12), the estimate of the complex symbol SNR,

SNR*, is a function of the random variables rnp and mss.
Let g denote that function

SNR* = g(mp, m.) (13)

Assume that g(mp, m,) is "smooth" in the vicinity of the

point (_p,_,_), where _p and m_s are the means of rnv
and m,,, respectively. The expectation of the estimate,

SNR*, can then be approximated by [3, p. 212]

( o, )'. ( o, )'.

+ 20g Og
0--_-p 0m,. cov (mp,m,,) (15)

In Eqs. (14) and (15), all the partial derivatives and the

covariance are evaluated at (_p,-_,,). Expressions for the

mean and variance of rnp, the mean and variance of m,,,

the covariance of mp and m,_, and the partial derivatives
are derived in Appendices B through E, respectively. Sub-

stituting all the terms frorn the appendices into Eqs. (14)

and (15), the mean and variance of SNR* are obtained,

E {SNR*} = SNR+
Ncos 2 (z/2)

)x + SNR - _ cos (z)

]+ SNR 2 (1- cos (z)) (16)

and

_ i [2 +SNR_______+SNR 2Ucos (z/2)

3 (z)) SNR3-_ (1-cos (z))]

(17)
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where

and

C1

z = ¢ooTsy

sine (WoT, y/4)

sinc (woT,12)

IV. Analysis Verification

Two methods are used to verify the analytical results
of the mean and the variance in the complex symbol SNR

estimation:

(1) Compare the numerical results of the analysis to sim-
ulation results.

(2) Set the offset frequency to zero and compare the

performance of the complex symbol SNR estimator
and that of the real symbol SNR estimator.

A. Simulation Results

Simulation results for the mean and variance of SNR*

are shown in Figs. (1) and (2), and are compared to the
theoretical results of Eqs. (16) and (17). The analytical

and simulation results are also compared in Table 1. In all

cases, the offset frequency, fo = Wo/(27r), is set at 20 Hz.

The simulation results are based on 100 runs each, and the

simulated means and variances are obtained by averaging
over the 100 runs.

B. Special Case

A special case is when the offset frequency wo = 0. In
this case, the performance of the complex symbol SNR

estimator should reduce to that of the real symbol SNR

estimator given in [1] and [5], with N samples of pure noise

and N samples of the signal plus noise.

For this special case, the mean and variance of the com-

plex symbol SNR estimates reduce to

1

E{SNR*} = SNR+ _(1 +SNR) (18)

2 N(2 + 4SNR + SNI% 2)CrSNR. (19)

The analysis in [1], which assumed a constant signal level

for all the samples, is easily extended to cover the ease of a

signal in only half the samples. The real symbol SNR and

the real estimate, E{SNR*}, in Eqs. (17a) and (17b) of [1]

are simply replaced by values SNR and SNR*, respectively,

representing averages over the 2N real samples. These av-

erage values are one-half the corresponding complex SNR

and complex estimate SNR* defined here. With these cor-

respondences, the mean of the real estimate in [1] reduces
to

1
E{SNR*} = SNR + _-Z-_(1 + SNR) (20)

and the variance of the real estimate is

(N__) 2 1gr2NR" = N- 2

x [(SNR2+2SNR+I)+-_--_(2SNR+I)]

(21)

For a large N, Eq. (20) is equivalent to

E{SNR*} = SNR+ 1(1 + SNR) (22)

and Eq. (21) approximates to

1 2

¢_NR" = _(SNR + 4SNR + 2) (23)

Comparing Eq. (18) with Eq. (22), and Eq. (19) with

Eq. (23), it is clear that the special case of the complex

symbol SNR estimator has the same performance as the

real symbol SNR with N signal-plus-noise samples and N
pure noise samples.

V. Conclusions

A complex symbol signal-to-noise ratio estimator is pre-

sented in this article. This estimator modifies the split-

symbol moments estimator for estimating the real symbol
SNR [2] in order to accommodate complex symbols, with

the assumption that the offset frequency is known. This

estimator can be used to measure the performance of the

full spectrum combiner as well as the complex symbol com-
biner for the Galileo S-band mission.
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Table 1. Simulation results of the complex symbol SNR estimation.

Mean of SNR*, dB a of SNR*, dB

SNR, dB N Ns Runs

Theory Simulation Theory Simulation

-2 -1.9968 -2.0039 0.2956 0.2834 2,500 10 100

-2 - 1.9984 -2.0136 0.2112 0.1937 5,000 10 100

-5 -4.9985 -5.0589 0.2454 0.2506 10,000 10 100

-8 - 7.9986 -8.0437 0.3056 0.2787 20,000 10 100
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Appendix A

Sums of the Halves of a Symbol and Definitions of nip and mss

The sum of the first half of the kth symbol is

N./2-1

IVs
l=0

rn .¢o ] -- e jw°TsNs/2
= --dke; + n_k

Ns 1 - c jw°Ts

lmdkeJ(1/4woTsy - 1/2_oTs + ¢o)Sinc (woTsy/4)
-- 2 sine (woT,/2)

+ nak (A-l)

Ns - 1

nnp. = E (nl, k + jnq,k) (A-4)

l=Ns/2

where j = v/L-] -.

Let s_ k and sp_ denote the signal parts of Y_ and Yp,,

respectively. Then Y_ and Y_k can be expressed as

YaK = s_k + n_,_ (A-5)

and

)_k = sz_ + nzk (A-6)

and the sum of the second half of the kth symbol is

Y_k

Ns -- l

l=Ns/2

__sdkeJ(woTsl + ¢o) -{-nBk

= rn dkcj(woTsNs/2 + ¢o) 1 -- ej(w°TsNs[2)
N. 1 -- Cjw°Ts

-}- nflk

=l_mdkeJ(3/4w Tsy - l/2woTs + ¢o) sine (WoT_y/4)
2 sinc (woT./2)

The product of the sum of the first half of the kth sym-

bol and the conjugate of the sum of the second half of the

same symbol is

_Ol k ")er_ k _ S* * $• Sak flk q- Sak n;k + nak SOL -}- nc_k nflk

_ 1 m2eJ(_woTs./2) sinc2(woTsy/4)
4 sine_(woT_/2)

* * n* (A-7)+ sc_knfl_ + naksflk + n_k _k

-Jr ntis, (A-2) Taking the real part of the product, one obtains

where the noise terms, n_ and nzk , are complex Gaussian

noises, with each of the components (real and imaginary)

having a variance of _r_/2. In terms of the in-phase and
quadrature noise samples in Eqs. (1) and (2), the complex

noise terms, na k and npk, are

_{y..y_}= l-m2cos(_-) sinc2(w°T'y/4)4 sinc=(_oT_/2)

* 8* rt* (A-8)

and

Ns/2-1

neck= E (nhk + JnQ'k) (A-3)
I=0

Define mp as

N

k=l

(A-9)
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The sum of the whole kth symbol is n.k = n& + jnQk (A-12)

Y_

Ns -- 1

mde j(w°TsI + ¢°) + nk}2m_
/=0

_ rn dkeJ_o 1 - e jw°TsNs
- N, I - e jw°Ts + nk

= rndkeJ(ll2_oT_u - ll2_oTs + _o) sine (woT_u/2) + nk
sine (woT_/2)

= sk + nk (A-10)

where sk is the signal part of tile whole symbol and nk is
2 in eacha complex Gaussian noise with a variance of a,_

component (real and imaginary), and

8t: = sc_k + 8ilk

nk ---- nak -]- nflk

where Slk, sQk and nlk, nQk denote the I and Q com-
ponents of the signal and the noise in the kth symbol.

Furthermore, }_, can be expressed as

}"_.= sIk + jsQk + nix + jnQk (A-13)

The sum squared of the kth symbol is

[y_12= _ sine2 (woT,,v/2)
,n _in----_ (_oT./2) + In_l=+ 2_{n_s;}

-- ,,,_c_+ In,.l"+ 2_{,,,..q.} (A-14)

where

sinc 2 (_oT,,y/2)

C_ = sinc"(_'oT,/2)

Note that the signal and noise parts of a whole complex

symbol, sx, and nk, can also be expressed in terms of their

in-phase and quadrature components, that is,

sl_ = Slk + jsQk (A-I1)

Define /ns._ as

N

,,.. = _ l)k.I_ (A-15)
k=l
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Appendix B

Evaluation of the Mean and Variance of mp

All the expectations in the following are conditional on

knowing the symbol synchronization.

N

1 _ E{Uk}E{mp} =
k=l

I m2 sine 2 (woT, u/4)

N
1 ,

+ _ _ z{_{s_k % + -°ks_ + ..k."
k:l

Because the {Uk} are independent, the variance of mp

can be computed as [4, p. 352]

N

_2 1

k=l

Now let subscripts I and Q denote the in-phase and

quadrature components of the signals. The second mo-

ment of Uk can be expressed as

2

E{U:} = _" _ Ss2 82 s2

1 rn 2sine 2 (woT_u/4) (B-l)

where

= _{(=_ + "_)(=k + _5_)}

and s_ and sz_ denote the signal part of Y_ and YZk,
respectively, as in Eqs. (A-5) and (A-6). The last step

in Eq. (B-I) follows from the independence of the noises
with zero mean in the two halves of each symbol. Note

that T=y : N_T_.

4
tT n

+ -_ + E{(f_ik=p_ + s.ekspe_) 2}

2 4

m 2 sinc2(woT_u/4) tr, + cf.___,
2 sinc2(woT_/2) 2 2

+ E{(s.,ksp,k + S_qkSzqk) 2} (B-3)

Combining Eqs. (B-l), (B-3), and (B-2) yields

a2 1 {lm2sinc2 (woT, u/4) a2 _)m, = _ \4 sine 2 (woT,/2) '_ +
(B-4)
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Appendix C

Evaluation of the Mean and Variance of m,,

The mean of m., is

E{m,.} = E IYkt2 where

k=l

1 N 1 N

: m'C_+ _ _ EI._T_+ _ _ E{_{_4}}
k=l k:l

= m2c_+ 2_ (C-l)

To find the variance of m., let

Yk = IYkl2

= Y,l+Y&

= (_.+ .,_)_+ (_Q_+ _q.)_ (c-2)

_ : E{t__}- (E{_,;])_ (C-4)

E_{v}: E'{m,.}

: (m_c_+ 2_}_)_ (o5)

Expanding V_, take the expectation of V_; apply

2 E{n_} E{n_} O, andE{_} = Z{_} : _, = =
E{._ } = E{.$_} = 3_._ [3,p. 147];and usethe indepen-
denceof n, k and nqk , and one will obtain

QO -2 {82E{v}} = 8_ + o _ ,, + _) + (d_ + _)_

x 8< + 8,n_c_o-_+ ,.._c_ (c-6)

The variance of Vk becomes

where Ylk, Yok, six, SQk, nlk, and nQk are defined in Ap-
pendix A. Because the {Vk} are independent, the variance

of m. can be expressed in terms of the variance of Vk [4,

p. 352],

N

k=l

o-g,= ,,,n_Cfo-_+4o-,I (c-7)

Finally, the variance of m_ can be written as

_ = 1 [4,.2c_ + 4_] (c-8)
m35 N
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Appendix D

Evaluation of the Covariance of mp and m,,

The covariance of m v and ms_ is defined as

cog (m_, m..) : E{(,._ - _v)(m,. - _.)}

= E{mvm,, } - myra,, (D-l)

As in Appendices B and C, let

= Y_IkY_I_ + Y_QkY_Qk

= (_,_ + ,,.,_ )(_,_ + ,_,_)

+ (_,_ +._,_)(_,_ +._,_) (D-2)

and

V_

(D-3)

The expectation of the product of UkVk can be expressed
as

E{ Uk Vk } =

O"n J- S,6zk 8ceQk 813Qk

_ .+ _-.,_c,_cos__. )

+ (r.(m C_) + (D-4)

where

sinc (woT_,/4)
C1 =

sinc (woT,/2)

sine @oT,_/2)
62 =

sinc (woT,/2)

and

Z = cgoT._y

Note that

C_ = 1612 [1 + cos (_)]

Then

E{mpmss } =

: k_ l:l

1
E{UkVk} + E Z{Uk] E{Vz}N 2

k:l l:l,l;_k

1

N2 [NE{UkVk} + N_v(N - 1)_,,1 (D-5)

Finally, the covariance of m v and m,_ is

coy (.-,,,,m.) = _[E{U,_V,,} - .,,,m..]

: -- 2 2 21 [m C2(r,_ + _4] (D-6)
N
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Appendix E

Evaluation of the Partial Derivatives

Denote the following parameters in a convenient form,

4sine 2 (woTs/2)

I<1 = sinJ (woT_u/4) cos (woT_y/2)

2
K2 : +2

cos @oLu/2)

02g ] 2Kl K2_p 2KIK2

2 c°s_(z/4) [ ( 2) 4] (E-3)_ cos_(z/2) 2SNR 1 + cos +

and

sine (woT.u/4)
C1 --

sinc @°%/2)

Z : oJoTsy

In terms of K1 and Ks, the estimate SNR* defined in

Eq. (12) is given by

SNR* = g(m v, ,n,,)

Og _v,_ss I'(l g'_p8_. =- (-_. - l;_mp)2

= - _-_#12SNR (E-4)

029 t 2K,_p0_L _.,_.= (_._-l;_v)3

1

-- 2a4n SNR (E-5)

K 1 mp

_as-- K2mp

(e-l)

Then g(Tfip,_ss) = SNR, and the partial derivatives of
this estimator function are

KI K2mp KI

(m_ - K2mv ) _ + --m. - K2-_v

z 22]1 SNR (1 +cos_) + __a cos (z/2)

(E-2)

029

Oln, pOm,s _'T_,-6_ss :

2K, K2_p K1

(-i-_ss -- /_-'27"_'p) 3 ('_ss -- /\"2_p) 2

cos(=/u)<SNR ,+cos + (E-6)

where the second lines of Eqs. (g-2) through (g-6) are

obtained by substituting the expressions for rg v = E{mp}

and i-fiss = E{m,s} from Appendices B and C.
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